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ON THE GEOMETRY OF NUMBERS OF NON-CONVEX
STAR-REGIONS WITH HEXAGONAL SYMMETRY

By R. P. BAMBAH, Pu.D., St John’s College, University of Cambridge*

(Communicated by L. J. Mordell, F.R.S.—Received 22 June 1950—Revised 10 January 1951)
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A method of Mordell is applied to the study of critical determinants and critical lattices of a type of
two-dimensional star-domains which can be roughly described as that of regions similar to
| 73 sin 30 | <8¢. In part I three general theorems are proved. They are applied in part II to
obtain the critical determinants and all the critical lattices of some special regions of this type.
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<«

= PART I. GENERAL THEOREMS

S

@) E 1. INTRODUCTION

i 5 The geometry of numbers for non-convex regions has in recent years attracted great attention,
=0 and many special regions have been studied by various authors. General results have also
v been obtained by Mordell (1945, 1946) and Mahler (19464, ).

Mordell (1945) considered the type of star-regions R defined by the inequality
If(x ]y Di<elf(1,1) 1,

where, for x>0, y>=0, (i) f(x,y) is defined, is symmetrical in x and y and is homogeneous
(of dimension 1, say), (ii) the region | f(x,y) | >|f(1,1)] is convex, and (iii) the boundary of
* Now at University College, London.
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432 R. P. BAMBAH ON

R either terminates on the axes or has them as asymptotes. In other words the regions
R have a symmetry which can be called rectangular.

Before stating Mordell’s results it will be convenient to give a few standard definitions.

(1) Let R be any region and . a lattice with no point except O in the interior of R. Then
& is said to be admissible for R or simply R-admissible.

(2) The lower bound of the determinants of all R-admissible lattices is called the critical
determinant of R and is usually denoted by A(R).

(3) R-admissible lattices of determinant A(R) are called critical lattices of R.

For his regions R Mordell showed that there exist a suitable number A and two suitable
points A(a, b) and B(b, a) on the first quadrant boundary of R such that we have the following
theorem. :

THEOREM. Let P be any point lying between A and B on the boundary of R. Then a line Q, Q, equal
and parallel to OP can be drawn such that Q, and Q, lic on the second quadrant boundary of R. If, for
all such points P, the area of the parallelogram OPQ, Q, is not less than A, then every lattice of
determinant A or less has a point other than O in the closed region R, i.e. A< A(R).

Further, if for some P the area of OPQ, Q, is equal to A and if the corresponding lattice & generated
by P and @, is R-admissible, then A = A(R) and & is a critical lattice of R.}

To establish the property postulated for R it is necessary to solve an extremal problem,
which, though simple in theory, may be difficult in practice. Mordell showed that the
problem can be solved for many particular regions.

Let 1,01, 1501, and [;Ol; be three lines through O such that Ol, and Ol; make angles of
120° and 240° respectively with O/,. These lines divide the plane into six congruent parts.
At Professor Mordell’s suggestion I have studied the possibility of extending his method to
the case of similar star-regions R, symmetrical with respect to these lines and their bisectors
and satisfying suitable convexity conditions. Obviously every such region R consists of six
parts, all congruent. Such an R will be called a region with hexagonal symmetry.

It proves to be convenient to divide these regions into four types. For three of them,
without postulating any extremal conditions for R, a number A<A(R) is obtained. In one
of these cases it is shown that there is just one lattice of determinant A admissible for R so that
A = A(R) and there is just one critical lattice of R. In each of the other two cases there exist

Jjust two lattices of determinant A, the admissibility of which is the necessary and sufficient
condition for A to be equal to A(R).

For R of the fourth type the problem is reduced to an extremal one of Mordell’s type.
First, a suitable number A and two suitable points #; and /, are found with H, and 7, lying
on the boundary of R between O/, and Ol;. (The points H, and I, lie between two other
points 4, and B, on the boundary of R. The points 4, and B, have importance for critical
lattices and are also easier to employ in applications.) Then the following theorem is proved :

Let P be a point lying on the boundary of R between H, and I, or coincident with A; or B,. Lines
P, P, and Py Py can be drawn equal and parallel to OP with the points Py, P, lying on the second sector
boundary of R and Py, P, on the third. Suppose that for all suck P one at least of the parallelograms
OPP, P,, OPP, P, has an area not less than A, then A< A(R).

1 In particular, the admissibility of lattices corresponding to 4 and B is a sufficient condition for the

equality of A and A(R). For bounded R, Mordell gave sufficient conditions for the admissibility of these
lattices. He could prove the admissibility of these lattices for some unbounded regions also.
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NON-CONVEX STAR-REGIONS WITH HEXAGONAL SYMMETRY 433

If for some P the larger of the parallelograms OPP, P, and OPP, P, has area equal to A and the
corresponding lattice *& is admissible, then A = A(R) and £ is a critical lattice of R.

It is interesting to note that for three of the four types it has been possible to avoid the extremal
condition which is necessary for the fourth type only.

In part IT of the paper the results of part I are applied to obtain the critical determinants
and all the critical lattices for the following regions.

(1) | r3sin 30 | <8¢ The result for this region is equivalent to Mordell’s famous theorem
on the minimum of a binary cubic form with a positive discriminant.

(2) Regions with hexagonal symmetry bounded by circular arcs.

(3) Regions with hexagonal symmetry bounded by parabolic arcs.

(4) Regions with hexagonal symmetry bounded by hyperbolic arcs with asymptotic angles
20>m—2tan~',/(159/57).

(5) Twelve-sided stars with vertical angles 20, where tan~!0-4221/,/3 <0< }7.

2. DESCRIPTION AND ANALYTICAL FORMULATION OF SOME PROPERTIES OF R

The assumptions about the star-region R are as follows. It is symmetrical with respect to
the lines /,0l,, ,0l;, [;0l; and their bisectors. Its boundary % either terminates on the
lines [, Ol,, [,0l; and I, Ol or has them as asymptotes. The region .7, external to R and
lying between O, and Ol, is convex. Each of the six parts of € is a continuous curve,

The analytical equivalents of these assumptions and of certain properties of R which can
be derived from them are given below. Regarding the distance of a point P from a directed
line / as positive or negative according as P is on the left or right of /, take the x, y and z
co-ordinates of a point to be its distances (with the proper sign) from the directed hnes
1,01}, 1501, and [ Ol respectively. (Obviously for every P, x+y+z = 0.)

Then R can be defined by the inequality

f(x,!/, Z) <f(c’ ’—2"36)3
where fis a non-negative function of x, y, z.
As R is a star-region bounded by continuous curves, we have

Jor x=0,2>0, f(x,y, z) is continuous, 1

J(0,0,0) = 0; and for t=0, f(tx, ty, tz) = tf(x,y, z)J
The symmetry conditions imply symmetry about the origin. Therefore
S(—=%, —y, =2) = f(%,9,2). (2-2)

After (2-2) the symmetry conditions are easily seen to be equivalent to the invariance of
R under a rotation of 120° or a reflexion in the line x = z. From this fact it easily follows that

(2:1)

S(x,y,2) is symmetric in all the variables. (2-3)

Itis obviously enough for a full description of R to describe its part in the sector x>0,z >0.
It will therefore be supposed in the rest of the section that x>0,z>0.
The convexity condition is equivalent to

Sy %0, Y1 Yo, 21+ 25) =1 (%1, Y15 21) (%25 Y2 Z5) - (24)

* & is generated by P and P, or P and P, according as OPP,P, or OPP;P, has area equal to A.
58-2
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434 R. P. BAMBAH ON

Let P (x,,9,,2,) be any fixed point. Consider the region .7 defined by the inequality
Sxy,2) =f(x,y,2,). The curve f(x,y,z) =f(x,y,,2,) either has the line x =0 as an
asymptote or terminates on it. Therefore, the point at co on the line ¥ = x, lies in .7/, so that,
by the convexity of 7', any point on the line x = x, to the right of P lies in.7’. In other
words, if z,>z, then f(x,, ¥, z,) =f(%,, ¥, z,). Therefore,

for fixed x, f(x,y, z) is a non-decreasing function of z. (2-5)
//Q \
&/ 0"
A
%
Pla, y%) T=2y
(% Y2:%2)
0 =0
Ficure 1

Similarly, using the fact that the region either terminates on z = 0 or has it as an asymptote,
it can be shown that
Jor fixed z, f(x,y, z) is a non-decreasing function of x. (2-6)
Let P, be the point (1—7, —2,147), where 0<r<1. As 01 —r<1+7, P, lies in the lower
half of the sector x>0,z>0. Consider the region.7 " defined by the relation

f(x)%z) >f(1—‘ra —2, 1—[—7’).
Let its boundary be denoted by ¢’. Suppose the line A,:y = —2 is not a part of ’. As the
region 7' is convex and symmetrical about the line A, :x =z and A, is perpendicular
to A, the only points in which A, meets " are P, and P, the image of £, in A,. Consequently
every point on A, lying outside the segment P, P, lies outside 7 '. As P, is below A,, P, is above
it, so that every point on A,, which lies between x = 0 and P,, lies outside .7’. This means
that if 0<7,<<1 and 7,>7, then f(1—r,, —2,1+7,) <f(1—7r, —2,1+7). In case A, forms
a part of ¥’, any point on it either lies on ¢’ or outside ', so that if 0<r,<1, then
S —ryy —2,1+471) <f(1—r, —2,1+7). From all this it follows that
if 0<r<C1, then f(1—r, —2, 1+7) is a non-increasing function of r. (2-7)
Let P be the point with co-ordinates (a—r7, —2a+-4r,a-+%r) and 7" the region
f(xay)z) 2f(d—-7’, M24+%7)a+%r)°
Suppose the co-ordinates of P’, the point where A, : x = z, meets ", the boundary of 77,
are given by (c;, —2¢,¢;). Then, because of its convexity and symmetry about A, " has
As, the line through P’ perpendicular to Aj, as a tangent or a tac-line. Consequently the
region ”, and in particular the point P, lies to the right of A;: y-+2¢; = 0. Therefore,
a>c;, and (a, —2a, a) the point, where z—y = 3a meets A, lies strictly inside 7 ”. From this
it follows that any point on z—y = 3a lying below P is strictly outside 7 ”. This means that
ifr;>rand 0<<a—r;<a-+§r), then fla—r,, —2a+§r,a+3r) < fla—r, —2a+4r,a+%r). In
other words

Jor 0<a—r<a-+ir, fla—r, —2a-+§r,a-+§r) is a strictly decreasing function of . (2-8)
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It may be observed in conclusion that if R is bounded, then f(x, y, z) = 0 only for
(%,9,z) = (0,0,0). On the other hand, if R is unbounded, then

f(oa a, -—-d) :f(a> 0, —a) :f(aa —a, 0) =0
for all a.
It will be convenient to call the sectors into which the plane is divided by the lines x = 0,
y = 0 and z = 0, sectors I, II, ITI, IV, V and VI, starting with the sector x>0, z>0 and
moving in the counter-clockwise direction. Also, if a point is denoted by P, then P, Py, P, P,
and Py will denote the points obtained from it by the rotations through 60°, 120°, 180°, 240°
and 300° respectively.

3. THE FIRST TYPE OF REGIONS R

Let R be defined by f(x,y, z) <f(¢c, —2c¢,¢),x+y+2z = 0. R will be said to belong to the
first type if, in addition to the conditions (2-1) to (2-8), f(x, y, z) satisfies the further condition

J(0, — 3¢, 3¢) =f(c, —2¢,¢). (8-1)

TaeoreMm 1. If R: f(x,y,2) < f(c, —2¢,¢), is a region of the first type, then A(R) = 2¢2 /3, and
the only critical lattice is the one generated by the mid-points of its boundary arcs.

Sy Sy

S
&

Ficure 2

Proof. Let the point (¢, —2¢,¢) be called 7 (see figure 2). From the symmetry and con-
vexity conditions it can be easily seen that the straight lines perpendicular to lines O7] at
points 7; (¢ = 1,2, 3, ..., 6) enclose a regular hexagon H, centred at O and lying in R. The
area of H is given by 60 T} tan $m = 8¢2,/3. As H is a subset of R, it is clear that

22, /3 = A(H) <A(R).

Further, it is known that A has just one critical lattice, namely, %, the lattice generbated
by points 7;. It will suffice, therefore, to show that this lattice is R-admissible.

Let S, denote the point 757 in vector notation. Its co-ordinates are (0, — 3¢, 3¢). There-
fore by (3:1) S, is external to R and so are S, S, ..., 5. Here the exterior of R is supposed to
include its boundary. By the convexity condition, R lies entirely within the hexagon
8185858455 8s. The only points of & within this hexagon are 7}, 75, ..., T, all of which lie on
the boundary of R. Therefore, ¢ is R-admissible and the theorem is completely proved.
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436 R. P. BAMBAH ON

4. DETERMINATION OF THE POINTS 4,, B, AND THE NUMBER A
In the rest of part I it will be supposed that f(x, y, z) satisfies, in addition to (2-1) to (2-8),
the further condition
J(0, —3,3) <f(1, —2,1). (41)

It will now be shown that in the half-sector 0<<x< z there exists a unique point 4; such
that the points 4,, 4, and 4,+4, lie on %, the boundary of R. This point 4, and its image
B, in the line x = z are the two points referred to in the introduction. Denote 4, +4, by
C, and its image in x = z by D,. Then from the symmetry of R it is obvious that all points
4,B,C,D,(i1=1,2,...,6) lieon .

Now let the co-ordinates of 4, be (@, —a—b, ). Then those of 4, are (a+b, —b, —a) and
the existence and uniqueness of 4, follow from

LEmMA 1. There exist unique non-negative numbers a and b, not both zero, such that

Sle, —2¢,¢) = fla, —a—0b,b) = f(2a+b, —a—2b,b—a). (4-2)
Further, 0<$b<a<b. (4-3)
Proof. By the symmetry of f(#,y, z), the relations (4-2) are equivalent to
Sle, —2¢,¢) = fla, —a—0b,b), (4-4)
and 0 =f(a, —a—b,b)—f(2a+b, —a—2b,b—a)
= fla, —a—0b,b0)—f(b—a, —a—2b,2a+b)
= (a+0) 3/(1—7, =2, 147) —f(1—r, =244, L+in)} (4:3)
where r=(b—a)/(b+a) and 7, = 2a/(a+D).

As a+b=0, (4-5) is equivalent to
0=131f(1—r,—2,147)—f(1—r;, —2+4r, 1+4r)
= g1(afb) +gy(afb) (say)
= g(afb). (4-6)
Now, as a/b increases from 0 to 1, r decreases from 1 to 0, while 7, increases from 0 to 1.
Therefore, for 0<a/b< 1, it follows from (2-7) and (2-8) respectively that g,(a/b) and g,(a/b)

are respectively increasing and strictly increasing functions of @/b. This implies that g(a/b)
is a strictly increasing function of a/b for 0<<a/b<1. Now, since

g(3) =/, ——1,:3:) —/&; —%:%)<0 (by (25)),
and g(1) =% —1,4) —/(0, —4, %)>0 (by (41)),
the lemma follows at once.
Lemva 1-1. a?+ab-+b2> 32,
Proof. Let T} denote the point (¢, —2c, ¢). Then, by the symmetry and convexity conditions

0A4,> 0T,. Therefore (a2 4 ab+b2) > 4c?,

and the lemma follows.
Definition of A. Define the number A to be the area of the parallelogram 04, C, 4,, i.e.

Jg (a®+ab+?). (4-7)
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5. DESCRIPTION OF FIGURE 3

Cy Dy

N
]

2 5 , %
Dy ) Kg N, 4 c
1

\ VA)
L r~
N, 2, » As — M, K
}“7‘ QAN ’
s \ e

2 } %
B 4{ Nk
5 3 (e

Ficure 3

Table 1 gives the co-ordinates of the points 4,, B,, C; and D, (1 = 1,2, 3).

TABLE 1
4,: (a, —a—b,b) Ay: (a+b, —b, —a) Ay: (bya, —a—b)
By: (b, —a—b,a) B,: (a+b, —a, —b) Bg: (a,b, —a—Db)
C: (2a+b, —a—2b,b—a) Cy: (a+2b,a—b, —b—2a) Cy: (b—a,2a+b, —a—2b)
D,: (b—a, —a—2b,2a+0b) D,: (a+2b, —b—2a,a—b) Dy: (2a+b,b—a, —a—2b)

Now follow the equations of a few lines:
A 4,0 ax—by = a’+ab+ b2, B, B,: bx—ay = a*+ab+b?;
A,A45: bx—az = a®+4-ab+b?; B,B;: ax—bz = a®>+ab+b?;
4,B,: x = a+b; 4,D,: 2ax-+by = 2a%+ 2ab— b2.

Define the points E,, F, and G, as follows:
E,: the intersection of 4,C, and B,D,.
F,: the intersection of C, 4, and D, B,.
G,: the intersection of D, 4, and C, B,.
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438 R. P. BAMBAH ON
Then, the co-ordinates of E,, F, and G, are
IR (2(a2—|—ab+62) (a®+ab+52) (a®+ab +b2))
2 s

(b+22) *  (b+2¢) * = (b+2a)
P (2(a2+ab+bz) _(a*+ab+-0?) _(az—[—ab—{—bz))
2 (a+2b) (a+2b) (a+26) )°
G.: 2(2a%+ 2ab— b?) (2a2+2ab— b?) (2a%+ 2ab— b?)
2! ( (4a—1b) * (4a—b) > (4a—d) )

The relative positions of points and lines in figure 3

Because of the symmetry it is sufficient to consider only sector II. The statement ‘4B is
above CD’, will mean that theline segment 4B is above the infinite line obtained by producing
CD in both directions.

D,B, lies above 4, B,, since D, is above A, B,, for a+2b>a--b.

F, lies below 4, B,, since ?i‘.’%;tf%;;_bz_) <a+b, because a?<<ab.
G, is below F,, since 202 1-2ab— 8 a4 baLb?
4a—b at+2b
ie. 243+ 6a%b + 3ab? — 2b® < 4a®+ 3a%b + 3ab? — b3
follows from 203463 —38a?h = (b—a)? (b-+2a) > 0.

If (%,,9,, 2,) are the co-ordinates of a point P, write
. x =P(x), y,=Py), z,=2Pz), z -y, =Pz—y),etc.
Then C] lies to the right of D,, which lies to the right of 4,, since

Ci(z—y) >Dy(z—y) > dy(2—y),
because 3b>3a>b—a,

D,(x)>C,(x), since b>a.

D,(x)<4,(x), since b<2a.

Next observe that the line through 4, perpendicular to OA4, lies between 4, B, and 4, C,, for

(i) £B,4,0 <4m, since B, A, is parallel to x = 0, and

(i) £Cy4,0 =2 C 4,0>,C,x,0 (where x, is the point where C; 4, meets x = 0)

> im,
since the slope of 4,C, = /(8) (a+b)/(b—a)>0.

From the above it follows that e lines perpendicular to OA4;at A; (i = 1,2, ..., 6) form a hexagon
whose parts, that do not lie in R, lie entirely inside the segments A, B,Cy, A,B,C,, ..., 43B;Cs. By
a segment 4, B,C; is meant the closed region bounded by the chord 4;C; and the arc 4, B,C; of .

Since the triangles 04, 4,, 04,4, and 4,C, 4, are equilateral, it is easily seen that 4, 4, is
equal to 4,C,, is parallel to 04, and passes through C,. Similarly, 4,4, passes through
Cs and C,, 4,4, through C, and C;, etc. 4,4, = 04; = 4,C, = C34,, etc., 04, is parallel to
A,A,, OB, to B,B; and so on. 4, B;, 4,B, and 4By are parallel respectively to y = 0, x = 0
and z = 0.
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It is now obvious that each of the parallelograms
CedyCsd;, CA3C, 45, Cy4,Ci4,, D\ B,D,B;, DyB.D;B; and DsB,DsB,

has its area equal to 4A.

6. Tue Types II, IIT anp IV

Let the straight line C, 4, meet % ,, the second sector boundary of R, at the point H,. The
regions are classified into types II, IIT and IV by consideration of the relative positions of
the points 4,, H, and F, as follows. R is said to be of type

II: if 4, lies between H, and F, (or if 4, coincides with H,) (see figure 4);
III: if H, lies between 4, and F, (figure 5);
IV: if F, lies between 4, and H, (figure 6).

-
-
prad

> O
NS ———
N

N3

S
’
o
[y

Ficure 4

If a part of C, 4, to the left of 4, forms a part of ¢, R is included in type III. If % contains
a segment of the line C| 4,, extending on both sides of 4,, R can be taken to belong to type II,
when considering the segment on the right of 4,, while R can be taken to be of type III when

VoL. 243. A. 59
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considering the segment on the left of 4,. As theorem 2 applies to both types II and III, it
will cover this type of R, too.

Note that the point 7,(2c, —¢, —¢) lies above the line C, 4, in cases II and III but below
it in case IV. The case when T, lies on 4,C}, i.e. F, and H, coincide, or 4, F, forms a part of
% 5, may be included in type III. |

The reflexion of H, in the line z = y is denoted by Z,.

FIGURE 5

7. STATEMENT OF MAIN THEOREMS

Let the lattices generated by 4, and 4, and by B, and B, be denoted by ¢, and .Z,,.

THEOREM 2. For R of type II or ITI, A(R) is not less than A. Also, A(R) isequal to A if and only
f L, and £, are R-admissible.

'THEOREM 3. Let R belong to type IV. Let P be either A, or By, or a point on €, between H, and I,,
inclusive. Straight lines P, P, and Py Py can be drawn equal and parallel to OP with points P, and P,
lying on € ,, and Py and P, on € 5, where €, and € 5 denote the parts of € in the second and third sectors
respectively. Suppose, for all these P, the area of one at least of the parallelograms OPP, P,, OPP, P, is
not less than A. Then A(R) = A.
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1If, for some P, the area of the greater of the parallelograms OPP, P,, OPP, P, ts equal to A and the
corresponding lattice *&" is admissible, then A(R) = A and %’ is a critical lattice of R. In particular
&, and £ , are critical if admissible.

Ficure 6

8. SOME SIMPLE LEMMAS

A few well-known lemmas which will be employed in the proofs of the above theorems
are given below.

Lemma 2 (Minkowski). Let R be a closed convex region symmetrical with respect to O and having
area equal to 4. Then every lattice & of determinant not greater than A has at least two points inside
or on the boundary of R. These points may lie only on the boundary of R only if the determinant of & is
equal to A.

LemMA 3. Let m be a parallelogram with a vertex at O and with its area equal to A. Then, if & is
a lattice of determinant A, m cannot contain two points P and Q of &£, non-collinear with O, unless one
of them, P say, coincides with a vertex on a side of m through O and the other Q lies on the side parallel
to OP.
* &' is generated by P and P, or P and P; according as the area of OPPP, or OPP;P, is equal to A.
59-2
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LemMmA 4. If & is a lattice of determinant A and OPQ, a triangle with area YA, then OPQ cannot
contain two points of £, non-collinear with O, unless they coincide with P and Q.

LemMmA 5. Suppose & is a lattice of determinant A and P is a primitive lattice point of &, i.e. the line
segment O P contains no points of & other than O and P. Let A be a line parallel to OP and at a distance
AJOP from it. Then any segment of A of length OP contains one and only one lattice point, except that
it contains two if the end-points belong to &. £ can be generated by P and any lattice point on A.

9. OUTLINE OF THE PROOF

Suppose that there exists an R-admissible lattice #’ of determinant A different from %2,
and &,. It is first shown with the help of certain parallelograms of area 4A that %’ has
a point P in one at least of [4,, £, B,], [4,, E,, B,] and [4,, E;, B,], where [4,, E, B]] denotes
the closed region bounded by the lines 4,F; and E, B, and the part of  lying between 4, and
B;; the points 4; and B, however, are supposed to be excluded from [4,, £, B;]. Without loss
of generality it may be assumed that P lies in [4,, £}, B|]. Then it is shown that neither
[4,, E,, B,] nor [4;, E5, Bs] contains a point of . For R of type II this is shown to lead to
a contradiction which proves the theorem in this case. For R of type III or IV, it is proved
that P must lie in [4,, F}, B;] (see figure 6 for example).

Itis next shown that, if a line parallel to OP and at a distance A/OP from it has an intercept
less than OP cut off by %, or %, then £’ cannot exist. This condition is seen to be satisfied
if P lies in [A,, F}, 1] or [B,, I}, H]. From this fact theorem 2 follows for R of type III also
(see figure 5).

For R of type IV there is still the possibility that P lies in [H}, F}, ,]. A sufficient condition
to exclude this is seen to be provided by theorem 3. However, in this case there may be an
&' with points on ¢, the boundary of R. But this does not contradict theorem 3.

In Lemma 17 a result is proved which may be useful in deciding, in the case of bounded
R, whether #, and £, are admissible or not.

10. PrROO¥S OF THEOREMS 2 AND 3

In the proofs the following notation will be adopted.

If points P and @ lie on %, then [P, @] will denote the closed region bounded by the straight
line PQ and the arc PQ of €. Also [P, S, @] will denote the closed region bounded by straight
lines PS and $Q and the arc PQ of ¢, and (P, @, R, S) the closed region lying between the
straight lines PQ, QR, RS and the part of ¢ intercepted in the quadrilateral PQRS. For
example, the shaded region in the figure is to be denoted by (P, @, R, S).

P Q

S

Ficure 7
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It will throughout be assumed that any 4; or B;lying in these regions is excluded from them.
Suppose that there exists an R-admissible lattice &', different from £ | and & ,, but with its determinant
equal to A.

LeEMMA 6. Any A; or B; cannot belong to £'.

Proof. Suppose, for example, that 4, belongs to #’. Then 4, must be primitive, for, other-
wise, £’ has a point inside R. The lines 4,4; (in case II, figure 4) and 4,C, (in cases III
and IV, figures 5 and 6) are both equal and parallel to O4,, and at a distance A/O4,, from it.
Therefore, by lemma 5, %’ has a point inside R, unless 4, belongs to #’, in which case £’ is
identical with #,. This gives a contradiction.

LemMA 7. In case II (figure 4), none of the regions [A,, H|], [Ay Hy), .... [Ag, Hg), [ By, 1]
[By, L], ..., [Bg, Is] contains a point of &'

Proof. Call these regions 1,3, ...,11,2, 4, ..., 12 respectively as in figure 4.

Suppose 1 has a point P of &’. The area of the triangle OB, D, equals 1A. Both [4,, B;] and
1 lie inside this triangle. Therefore, by lemmas 4 and 6, [4,, B;] contains no point of £’. As
the area of the parallelogram 0A4;Cg 4, equals A and P does not coincide with 4,, it follows
from lemma 3 that [C;, 4¢] contains no point of #’.

Now join 4, B; and 4, B, and let them intersect 4; 4, in the points K, L,and 4,45in L, and
K, respectively (see figure 4; K, L, and K, L, are shown as broken lines.) Now K, L, K, L, is
a parallelogram, symmetrical about O, and of area 4A, since the area of 4, K, L, 4, equals
the area of 4, C3A4;4, and the area of 4, L, K, 4, equals the area of 4,4,C;4, (each by the
theorem of parallelograms between the same parallels). Therefore, by lemma 2, #’ has at
least two points, other than O, in this parallelogram.

Now, by definition #’ has no point in R. It has also been proved that it has no points in
[4g, Cs] and [4,, B;] and so also in their images in O. Therefore #” has a pointin 3. Similarly,
it can be proved that.#’ has a point in 5 and then in each of 7, 9 and 11 in turn. Therefore,
application of lemma 3 to different parallelograms as in the beginning of the proof of this
lemma shows that %’ has no point in any of [4,, C}], [4,, Cs], .., [4s, Cs]-

Now consider the hexagon formed by the lines through the points 4,, perpendicular to the
lines 04; (¢ =1, ...,6). It was shown in §5 that the parts of this hexagon external to R lie
entirely within the regions [4,, Ci], ..., [4g, Cg] (see figure 4). As £’ has been shown to have
no point, besides O, inside R or in any of [4,, (1], ..., [4s, Cg], it follows that £’ has no point
in this hexagon.

But this is in contradiction to lemma 2, since this hexagon is convex, is symmetrical about
O and has area 6042 tan 30° = 8(a%+ 5%+ ab)/,/3 = 4A. Therefore the assumption is wrong,
i.e.#' hasno pointin 1. Similarly, it can be proved that.#’ has no point in any of the regions
2,3,...,12, so that the lemma is true.

In the statements ‘the point P lies below, above, to the right or to the left of a line A’,
the case when P lies on A will also be included. |

In all the three cases IT to IV define the points K, L,, M, and N, to be the intersections, as
shown in figure 3, of 4, B, with the lines 4;C;, C, 4,, B;D, and D, B,, respectively. The points
K,L,M,N;(i=2,3,4,5,6) are defined by suitable rotations.

LemMA 8. If. %' has a point in each of the regions [ 4,, Ey, Dy, (B, E,, Ky, M;) and (4s, E5, Ny, L,),
then &' must have a point either in [ A, E5, Bg) orin [ By, 1] ; the latter case arises only in cases I1I and IV.
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In the proof, without explicit mention, use will be made of the fact that for R of type II,
<’ has no point in any of the regions [4,, H] or [B;, I]. It will then suffice in the proof to
refer to figure 6 only, the relevant parts of which are reproduced here.

FI1GURE 8

Proof. Call the points of £’ in the regions [4,, E,, D,], (B,, E,, K;, M;) and (43, E3, Ny, L) P,
P, and P, respectively. Produce OB, to meet 4,C, in the point J, and M; K; in K. (K may be
below J, but that does not affect the argument.)

Then P, lies either (i) in the triangle B, KM; or (ii) in the triangle B,E, J.

The lemma is proved for these cases separately.

(i) P, lies in the triangle B, KM;. Consider the point 7 —F,. Both P, and £ lie between
the parallel lines OB, and D;B; B, D;. Therefore P;— P, lies to the right of the straight line
D, B, B,D;, since O, P,, Py and P;— P, are vertices of a parallelogram.

P, lies below 4,B, and P, above it. Therefore P;— P, lies below the x-axis, since 4, B, is
parallel to the x-axis.

P, lies to the left of A3 By and P, to its right. Therefore P;— P, lies to the left of the line z = 0,
which is the line through O parallel to 43 B,.

Consequently P;— P, lies in the triangle formed by the lines B;B,, x = 0 and z = 0 (sec
figure 9).

Therefore for R of type III or IV (figures 5 and 6), P;— P, lies in [B,, I,]. By symmetry,
P,— P, lies in [By, 1], i.e. the lemma is true for this case.

For R of type II (figure 4), P,— P, lies in R since it has been proved in lemma 7 that [B,, 1,]
contains no point of &’. This contradicts the definition of #’. Therefore (i) does not arise
for these R.

(ii) The point P, lies in the triangle B,E,J. Consider P, —F,. Both P, and £, lie between
the parallel lines OB, and B; B, D,. Therefore P, — P, lies to the left of B; B, since OB, passes
through the origin.
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P, lies above the line 4,4,C, and P, below it. Therefore P,— P, lies above 04, which is
the line through O parallel to 4, 4,.

Ficure 9

P, lies below D, B, and P, above it. Therefore P,— P, lies below OB, the line through
O parallel to D, B,. ' '

Let G, I' be the line through C, parallel to 4,C;. This line is above C,D,. Therefore both
P, and P, lic between the parallel lines C; 4, and C,T. Also the lines 454, 04,, A,C, and C, I
are parallel and the distances between consecutive lines are the same. Therefore P, — P, lies
above 4; 4.

From the above P,—P, lies in the quadrilateral formed by O4g, A.FE,, E¢B, and B, 0
(see figure 10).

B

4

B

E
A‘i"As 6

Ficure 10

Therefore for R of type II P,—P, lies in [Ag, Eg, Bg]. Hence P,— P, lies in [4,, E,, By], as
asserted in this lemma. For R of type I1I or IV either P, —P, lies in [B,, I;] or P,— P, lies in
[A:;’ E39 B3] ¢

This completes the proof of the lemma.

LEMMA 9. Z’ has a point in one at least of the regions [4,, E\, B,], [y, E,, By] and [As, E,, B;].

Proof. (Either of figures 4 and 6 may be consulted.) Suppose .#’ does not have a point in
any of the three regions. By symmetry it does not have a point in their images in O either.
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Consider the parallelogram M, N, M, N,, shown by dotted lines in figure 6. Its area is
4A and it is symmetric about Q. Therefore it contains a point of £’ other than O.

Now, #' has no point in

(i) R, by definition of #’,

(ii) [4,, B,], since it lies in [4,, E,, B,],

(iii) [4,, E,, B,], by hypothesis,

(iv) [Bs, L], by lemma 7 in case II, and since it lies in [4;, £, B,] in cases IIT and IV, and

(v) the images of [4,, B,], [4,, E,, B,] and [Bs, I,] in O.

Therefore, ¢’ has a point in one at least of (4,, E,, Ny, L,) and (45, E5, Ny, L), and since
they are images in O, in both.

Similarly, by considering parallelograms K; Ly Kz Lg and M, N, M; N it can be shown that
' has a point in each of (B, E,, Ky, M;) and (4, Ey, N,, L,).

Therefore it follows from lemma 8 that %’ has a point in [43, E;, B;] or, in the case of R of
type IIT or IV only, in [ By, I;], which then lies in [4,, E,, B;]. That gives a contradiction and
hence the lemma.

Without loss of generality, it can now be supposed that &' has a point P" in [4,, E,, B;]. Then

LeMmA 10. Z7 has no point in [4,, E,, B, or [4,, E,, Bs].

Proof. (Consult figures 4 or 6.) Suppose.Z’ has a point P, in [4,, E,, B,]. Consider P'+P,.

P'lies to the left of the line 4, C; and P, to the left of 04,, which is parallel to 4, C;. Therefore
P’ P, lies to the left of 4, C.

P, lies below B,D, and P’ below the parallel line OB,. Therefore P’ +- P, lies below B, D,.

As both P’ and P, lie above 04, and to the right of OB,, P’ + P, also lies above 04, and to
the right of OB,.

Consequently, since P'+ P, does not lie in R, it lies either in [4,, C|] or in [B,, D,].

Ficure 11

Now the area of the triangle 04, C, is equal to $A. P’ lies in 04, C; and is different from
4, and C). Also the point P’ + P, is not collinear with O and P’. Consequently by lemma 4,
P’ + P, does not lie in [4;, C]. Similarly, P'+ P, does not lie in [B,, D,]. Hence the contra-
diction. Therefore #’ has no point in [4,, E,, B,].
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If #’ is supposed to have a point P; in [4;, E;, B;], a contradiction can be obtained by
considering the point P;— P’ in a similar way.
Therefore the lemma is true, i.e. £’ has no point in [4,, E,, B,] or [4s, E;, B,].

10-1. End of the proof for R of type 11

Let R be of type II. (Consult figure 4.)

By lemma 10 the lattice #’ has no point in [4,, E,, B,] or [4s, E;, B;], and hence, by taking
images in O, none also in [4;, E, B] or [4g, Eg, Bs]. Also by lemma 7, it has no pointin 2 or 8.

Now consider the parallelogram D,B;D, B,;, shown with dotted lines in the figure. It
satisfies all the conditions of lemma 2 and hence contains two points 4-P of £’. As £’ has no
point in R, [4,, E,, B,], [4s, Es, Bs], 2 or 8, one of the points + P, say P, lies in [4,, E,, D,]."

Similarly, by considering the parallelograms M, N, My N; and K;L;KgLg, it is seen that
a point of £’ lies in each of (4, E;, N,, L,) and (B,, E,, K5, Mj;).

Hence lemma 8 applies, so that %" hasa pointin [4;, E;, B;]. But this contradictslemma 10.
Therefore the assumption at the beginning of §10 was wrong, i.e. there is no lattice, other
than %, and %,, of determinant A, which does not have a point inside R.

This completes the proof of theorem 2 when R is of type II.

10-2. Proofs of theorems 2 and 3 (continued)

Hereafter R will belong only to types III or I'V.

LemMmA 11. &’ has a point in [B,, Fy, 4,].

Proof. (See figure 6.) Suppose £’ has no point in [B,, F, 4,]. By symmetry #’ has no
point in [B,, F, 4,]. Applying lemma 2 to the paralleogram D, B; D, B, one finds that #” has
two points 4 P, other than O, in this parallelogram.

Now #' has no point in

(1) [B, 1], since it lies in [B;, F}, 4,],

(i) [4y, E,, By], by lemma 10,

(iii) [Bs, L], since it lies in [Bs, Ey, 4,]; and so also in

(iv) [By, 1], [4s, Es, Bs] and [Bg, I].

Therefore, one of these points 4 P lies in [4,, E,, D,].

Similarly, by considering the parallelograms A, N, M; N; and K; L; KgLg it can be shown
that £’ has points in each of (43, E;, N,, L,) and (B,, E,, K3, M;).

Therefore by lemma 8, %' has a point in [ By, I;] which is contained in [B,, F}, 4;]. But this
is a contradiction so that the lemma is true, i.e. ¢’ has a point in [B,, F}, 4,].

10:3. Two lemmas

Let the point of ¢’ in [B,, '}, 4] be denoted by P. By taking, if necessary, the lattice point
on OP nearest to P, P can be supposed to be primitive.

LemMA 12. Any line parallel to OP has a length greater than 20P intercepted between (1) A,C, and
CyAs, (1) ByDy and B, D, (see figure 6).

Proof. (i) P hes between 04, and 4, C,. Also 4,C, and C, 4, are lines parallel to 04, and
at equal distances on opposite sides.

(ii) Similarly.

Vor. 243. A. 60
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LemMA 13. (a) (2) If the line A, parallel to OP and at a distance AJOP above it, has a length less
than OP intercepted by € , of € 5, there is a contradiction to the hypothesis that £’ has no point inside R.

(ii) If the line A, parallel to OP and at a distance A|OP below it, has a length less than OP inter-
cepted by € , or €, then there is a contradiction to the hypothesis about &' .

(b) If in the above one of the two intercepts equals OP and the other is greater than or equal to OP,
then &' may be admissible.

Proof. (a) (i) Suppose, for example, that A has a length less than OP intercepted by %,.

By lemma 12, the length of A, intercepted between the lines 4, C; and C, 4, is greater than
20P. Also A is at a distance A/OP from OP. Therefore, by lemma 5, at least two points of
£’ lie on the segment A, of A intercepted between 4, C; and C,4,.

The length of the segment of A, intercepted by %, is less than OP. Therefore at most one
point of #’ lies on this part of A.

No point of #’ lies in the part of A, intercepted between %, and 4, C;, because [4,, C|] does
not contain any point of #’, other than P. Nor is there any point of #’ in the part, if any, of
A, between €5 and C,4,, for £’ has no point in [4;, E;, B,].

Consequently at least one point of £’ lies in the part of A, lying inside R. This gives the
required contradiction.

(ii) Similarly.

(b) IfZ’ hasno point in the part of A, lying inside R, two points of %’ must lie on the part
of A, intercepted by %, or % 5. This is possible if the conditions of the lemma are satisfied and
the end-points of the intercept equal to OP are points of #’. In this case ¥ 'may be admissible.

10-4. End of the proof of theorem 2

Theorem 2 for R of type II has already been proved. Therefore in this section only R of
type III will be considered.

In lemma 11 it was seen that for such R ' has a point P in [4;, F}, B,]. In this case,
[4,, F, B,] consists of two parts, namely, [4,, ;] and [B,, ] (see figure 5).

In lemma 14 below it will be shown that P cannot lie in [4,, H] or in [B,, I,]. This gives
a contradiction, so that for R of type III, too, all lattices #’, of determinant A and different
from %, and .%,, have a point other than O inside R, i.e. theorem 2 is true.

LemmA 14. P cannot lie (1) in [4,, H], () in [B;, 1]

Proof (see figure 5). (i) P lies in [4;, H;]. Join OP and let it intersect D, B, at Q. From
D, B, cut oft D, Q" equal to B, Q. Join B, Q.

As OB, is equal and parallel to B,D,, the triangle OB, @ is congruent to B,D, Q’. Therefore
B, Q' is equal and parallel to 0Q. Hence, the area of the parallelogram 0B, Q’'Q = area of
OB,D,B, = A. Therefore the distance of B,Q’ from OP equals A/OQ, which is greater than
or equal to A/OP.

Now B, Q' lies in the triangle B, M, D,, for OQ lies in the triangle formed by OB,, B, I, and
the x-axis. Also as the line B, D,, being parallel to OB,, intersects %, only atD,, Q' lies inside R.
Consequently B, Q" meets €, in a point lying between B, and @’. Therefore, the length of
B, Q' intercepted by %, is less than B,Q’ = 0Q < OP.

As the line A is nearer to O than B, Q’, the length of its intercept on %, is less than OP,
since, as a line moves towards O parallel to itself, its length intercepted by %, does not
increase.
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Hence, by lemma 13, %" has a point inside R. This is a contradiction. Therefore P does not
lie in [4,, H}]. :
(ii) The proof follows as in (i).

10-5. End of the proof of theorem 3

Henceforth R belongs to type IV and reference is made only to figure 6.

LemMmA 15. P cannot lie () in [4,, Fy, L], (@) in [ By, Fy, H{].

Proof. (i) Let P lie in [4,, F,1;]. Join OP and let it intersect B, 1} in Q. Then the proof
follows by repeating the argument of lemma 15, word by word.

(i) Similarly. ;

End of proof. Pliesin [4,,F,, B,] butnotin [4,, F}, [|] orin [B,, F;, H;]. Therefore P lies in
[H 1> F 1> Il] : )

Let OP intersect %, at Q. Then 0Q,<OP and A/OQ,>A/OP. Therefore, if it can be
proved that the line parallel to 0@, at a distance A/OQ), from it, has a length less than or
equal to 0@, intercepted by %,, it will follow that A, the line parallel to OP at a distance
A/OP, has a length less than or equal to OP intercepted by €,. Then lemma 13 will lead to
a contradiction to the definition of #’.

Similar results hold for 4, ¢ and %.

This can be summed up as follows:

Let P be any point on € | between Hy and I,. If the line parallel to OP and at a distance A|OP above
(or below) OP has a length less than OP intercepted by one at least of €, and € 3 (or €5 and € ), then
no lattice, different from & | and £ o, and of determinant A, is admissible for R.

L, and & ,, have points on the boundary of R and may be admissible.

If for some P, the least of the above intercepts is OP, then the lattice £, generated by P and an end-point
of this intercept, is admissible if &' has no point other than O, inside R.

In lemma 16 it will be proved that there exist lines P, P, and P; P, equal and parallel to
OP such that P, and P, lie on ¥, while P; and P, lie on ;. Then the equivalence of the above
with theorem 3 follows from the fact that, if a line moves towards O parallel to itself, its
intercept on %, or %5 does not increase.

10:6. The existence of P, P, and Py P,

LemMA 16. For all poinis P on €, between H, and I, there exists

(1) a line P, P,, equal and parallel to OP with P and Py on % ,, and

(#4) a line Py P, equal and parallel to OP with Py and Py on € ;.

Proof. (i) As a line A moves towards O parallel to itself, its intercept by €, if finite at any
stage, decreases continuously to zero, except when €, contains a line A’ parallel to A. Then
the intercept decreases continuously to the length of A’ when A coincides with A’; it becomes
zero after that.

If%, contains a line A’, parallel to OP and of length not less than OP, P,F, can be taken to
~ be any segment of length OP on A’, i.e. the lemma holds. Therefore, there remains here only
the case where A’ <OP.

It will suffice to prove the lemma for all points P on the line B, I;. For, if P does not lie on
B, I, OP can be produced to meet B, I; at Q. Then @, @, can be found equal and parallel to

0Q with @, and @, on %,. Then moving @, @, parallel to itself towards O continuously one
60-2
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arrives at a position where its intercept P, P, on %, equals OP. In the rest of the proof of the
lemma P will therefore be supposed to lie on B, I,.

Produce OB, to B. From B,B cut off B, P" = B, P. P"lies outside R and below C,D,, since,
for the x-co-ordinates x(P), etc., it is clear that

#(P") —x(B,) = x(B,) —x(P) <x(By) = #(Dy) —#(By).

Join D, P". As D, B, is equal and parallel to OB,, the triangles OB, P and D,B,P" are con-
gruent. Therefore D,P" is equal and parallel to OP. Also D,P" lies entirely inside [C,, D,].

0 Z=0
FIGURE 12

Therefore producing D, P” to intersect €, one gets a line parallel to OP with a length greater
than or equal to OP intercepted by %,. This line can be moved continuously parallel to
itself towards O, till its intercept P, P, on %, equals OP. This completes the proof of (i).

(ii) Similarly.

With the proof of this lemma, the proofs of theorems 2 and 3 are complete.

11. SOME REMARKS ON THE ADMISSIBILITY OF .#; AND %,

In this section R may belong to any of the types II to IV.

By the symmetry of R it is obvious that either both or none of £, and Z, is admissible.
Therefore, attention will be confined to Z, only.

In vector notation any point of %, is of the form £4,+74,, where { and 5 are integers.
Therefore, from table 1, it is clear that the co-ordinates of a point of &, are given by

x=af+(a+b)n, y=—(at+b)i—by, z=0bE—ay. (111)

Suppose a/b is rational. Then ., has an infinity of points on the line x = 0. Therefore, if
R is unbounded, -#; cannot be R-admissible. In this case the problem of finding the critical
determinant of R remains unsolved, unless, of course, R belongs to type IV and theorem 3
gives a critical lattice different from %, and .#,. If R is bounded %, may still be admissible.
Both now and also when a/b is irrational lemma 17 gives a criterion for the admissibility of
&, for bounded R.

LemMA 17. Let D be an integer such that
S0, —J{(@*+ab+0%) (D+ 1)}, J{(@+ab+52) (D+ 1)} (6, —20,0).  (11-2)
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Then £, and £, are admissible if, and only if, the co-ordinates of the finite number of lattice points
(11-1) weth 0<£2+&n+n2< D, (11-3)
satisfy the relation 95 2) = £, — 26, 0). (11-4)
Proof. V;, the point with co-ordinates [0, — ./{(a®+ab+b%) (D + 1)}, /{(a®+ab+b%) (D+1)}],

is at a distance {$(a%>+ab+5?%) (D+1)} from O. By the symmetry and convexity conditions
R lies within the hexagon V}V,V,V,V;V; and so also in its circumcircle:

¥+i(z—9)? = §(at+ b +-ab) (D+1).
The points of &, within this circle satisfy the relation
E+&n+1°<D,
and the lemma follows from (11-3) and (11-4).

If R is unbounded and a/b is irrational, it may not be easy to decide whether #; and Z,
are admissible or not. Here, to prove that all the points of £ lie outside or on the boundary of
R, it must be shown that if f(x,y, z) = f{a€+ (a+0b) n,— (a+b) §—by, —bE—a} = $(&,7), then
¢(&, 1) =f(c, —2¢,¢) for all integers &, 7, not both zero. This may be an extremely difficult
problem. However, if ¢(£,7) is a polynomial with rational coefficients, elementary con-

siderations, like those of congruences or irrationality of roots of an equation, may give an
easy solution of the problem.

PART II. APPLICATIONS

12. PRELIMINARY REMARKS

In order to apply the results of part I to any particular region R one has first to verify that
R satisfies conditions (2-1) to (2-8). One has then to examine whether the relation (4-1) is
satisfied or not. If it is not, then theorem 1 applies, and gives both the critical determinant
and the only critical lattice of R. If (4-1) is satisfied, one determines the number a, b and A.
In practice it may suffice only to write down the equations giving these quantities. One
has next to investigate if R belongs to types II and III dealt with in theorem 2 or to type IV
to which theorem 3 applies.

As has already been seen in §8, R belongs to types II or III if the point

o (2(a2+ab+b2) _(a®+ab+b?) (a2+ab+b2))
2 (20+4a) (2b4a) (2b+a)
lies below (or on) the point 7}, (2¢, —¢, —¢),i.e. if
a?+b*+ab<c(2b+a). (12-1)
Similarly, R belongs to type IV if
a’+b2+4-ab>c(2b+a). (12-2)

In determining the type to which R belongs it is often convenient to use the following:

R belongs to type II if, at the point 4;, the function f{x,y, z) decreases as (x,y,z) moves
along 4, 4, in the direction of increasing ». For this implies that the points in the neighbour-
hood of 4, and lying between 4, and 4, are inner points of R.
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Now if R belongs to the first set, i.e. to types II or III, theorem 2 applies and gives A(R)
if £, and £, are admissible.

If R belongs to type IV, theorem 3 applies. To obtain any result from this theorem one has
first to show that for all points P on the boundary % between I, and 7} (¢, —2c,¢) the line A,
parallel to and at a distance A/OP from OP has a length less than or equal to OP intercepted
by &, or 5. In practice it is convenient to take P between 4, and 7;. It may often be more
convenient to prove the equivalent area condition, viz. the area of one at least of the
parallelograms OPP, P, and OPP; P, is not less than A. P, P, and P, P, were defined in lemma
16 as also in theorem 3. This condition can be expressed analytically as follows:

If (%), y,, z,) is a point between 4, and T3, i.e. if

S 91,21) =S¢, —2¢,¢), (12:3)

where a<x,<¢, ¢<z;<b, (12-4)
and if S, gty rd2) =6, —26,0), (12:5)
and both the points (p-+ 3x,, ¢+ 3y, 7+ 32z,) lie either in the second or in the third sector then,
|p(z»1—y1)—x1(r——q)|>A\/3. (12+6)

If the equality sign in (12-6) is not needed for any point P different from 4,, then theorem 3
gives the value of A(R) provided that %, and %, are admissible. In this case #; and %, are
the only critical lattices. If the equality sign in (12-6) is necessary for some P different from
4, and if the corresponding lattice % is admissible, then A(R) is equal to A even if #, and
&, are not admissible. Obvious transformations applied to £ give six critical lattices,
except when P coincides with 77, when there may be only three critical lattices related to .%.

If in (12-6) the sign of equality is needed for P coinciding with 77, then, because of the
symmetry of R, the areas of both OPP, P, and OPP;P, will be equal to A and the points
P, P, P, and P, will lie on the same straight line, say in the order given here. In this case it
can sometimes be proved that the lattice £” generated by P and P, is not critical by the
following

LemMmA 18. " cannot be critical unless P, Py = Py Py = P, P, = OP.

Progf. From lemma 13 (b) it is easy to see that if £” is critical, then P,, P,, P, and P, all
belong to #” and the line segment P, P, contains no other point of £”.

One way of proving that the above conditions are not satisfied is to show that the point
P,— P does not lie on %, the boundary of R. This gives the

CoroLLARY. If P,— P does not lie on €, £" cannot be critical.
Sometimes it may be more convenient to work in the second sector instead of the first.

18. THE REGION | 73 sin 30 | <8¢3
In the co-ordinate system defined in §2 the region R can be defined by the relation
Sy, 2) = [ryz [ <20
TueorREM 4. Let R be the region defined by
S(x,y,2) = |xyz | <23, x+y+z=0. (13-1)
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Define a, b and A by the relations
203 = ab(a+b) = (b—a) (a+2b) (2a+b) (13-2)

and A= %(a2+b2+ab). (13-3)

Then A(R) = A, and the only critical lattices are & | and & 5, where
(i) &, is generated by the points (a, —a—b,b) and (a+b, —b, —a), and
(i1) &, is generated by (b, —a—b,a) and (a+b, —a, —b).
Proof. It can easily be verified that R satisfies the conditions (2-1) to (2-8) and (4-1).
The equations (4-2), which define @ and 4 in part I, are equivalent to (13-2) and give

b3+b%a—2a%h —a® = 0. (13-4)
It will now be shown that R belongs to type II. Write for x>0, z>0,

f(x,Z/, Z) = xz(x—l—z).
The equation of 4,4, is

a?+b2+ab = ax—by = (a+0b) x+bz (see §5).
Therefore, along this line,
g,—]; = (2xz-+22) + (x242x2) Z—i

= $b(2xz+2) — (a-+b) (24 212)}.
At the point 4,(a, —a—b, b) the above gives

U L b5 4+200) = (a+b) (a2 +200)}

= % {b%—a®— 3a%b}

=—a(a+b) (by (13-4))
<O0.
Therefore R belongs to type II.
Consequently theorem 2 applies and theorem 4 follows if it can be shown that &, is

admissible.
Now any point of &, has co-ordinates

X=at+(a+b)y, Y=—(a+b){—by, Z=0bt—ay,
with integers &, 7. Thus
SX Y, Z) = [{ak+ (a+0b) pH{(a+0) E+ by} {bE—an} |
— | ab(a-+5) (8 —1%) -+ (45— a5+ 3ab?) €+ (85— a® — 3a2) &
= ab(a+0b) [&—p*+28—En*|  (by (13-4)).
E3 428 —En2—n3 =0
gives no rational value for ¢/y, &2 28— g2 — g | =1

As the equation
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for all integers §, 7, not both zero. Therefore for all points of Z,, other than 0,
J(X, Y, Z)>ab(a+b),

i.e. 2, is admissible and the theorem follows.
Theorem 4 is easily seen to be equivalent to the following theorem of Mordell (19434, 5):

THEOREM. If f(%,y) = ax®+ bx%y+ cxy®+dy?, and if
D = 18abcd — 27a2d? - b%c% — 4ac® — 4db3 > 0,

then integer values of x, y, not both zero, exist such that

4D
o< /o (13:5)
The equality in (13-5) is necessary if and only if

L (% y) o 2%y — 22> — 9,
where e is any constant.
Other proofs of this theorem have been given by Davenport (1945) and Delaunay (1945).

14. CIRCULAR HEXAGONS

TueOREM 5. Let R be a region with hexagonal symmetry bounded by circular arcs. Let the boundary
arc in the first sector meet the lines x = 0, z = 0 at an angle sec™' A, where 1 <A<2, and let the circle,
of which this arc is a part, have its centre at the point (g, —2g,8). Then A(R) = 2¢2,/3, where
¢ = 3(2—2Q) g, and there is only one critical lattice, namely, that generated by the middle points of the

boundary arcs.
Progf. The first sector boundary of R is easily seen to have the equation

(=) +3{(z—g) — (y+29)}* = V¢, x+y+z=0.
Eliminating y and solving for g,
3(4—22) g = 6(x+2) +£2{9(x+2)%2— (12— 312) (x24xz+22)}.

On considering the intersection of the above with the line x = 0 one finds that the positive
value of the radical is to be taken. Therefore, in the sector x>0, z>0 the equation of %, the
boundary of R is given by

fx,y,2) = 6(x+2) +2{9(x+2)2— (12—3A%) (#2224 22} = 3(4—A%) g.  (14°1)

The middle point of this arc is (¢, —2c,¢), where
3(4—22) g = 12¢+6¢A,

or c=3%(2-1)g
Now F(0, —3¢, 3¢) = 6c{3+ (32— 3)}} = 3(2—1) {34 (312—3)}} g,
and Sle, —2¢,¢) = 3(4—2%) g.
Therefore J(0, —3¢,8¢) =f(¢, —2¢,¢),
since 34 (812—=3)=2+1,
because 312—3—(1—1)2=2(1+2) (A1—1)=0.

Consequently the region belongs to type I and the theorem follows on application of
theorem 1.
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15. PARABOLIC HEXAGONS

THEOREM 6. Let R be a region with hexagonal symmetry bounded by parabolic arcs. Let the mid-point
of the arc in the first sector be (c, — 2c, c), and suppose the latus rectum of the parabola, of which this arc
Sorms a part, is Ac, where A =>$. Then

(@) if 1=8, A(R) = A, and the lattice generated by the mid-points of the boundary arcs is the only
critical lattice;

(b) if $<<A<3, define a, b and A by

121¢ = 3A(a+0) +{91%(a+b)%2—24A(b —a)?}
= 3A(a+2b) +{9A2%(a+2b)2—2161a2)}, (15-1)

and A= % (a%+ab +b?), (15-2)

then A(R) = A and there are just two critical lattices.
Proof. The equation of the boundary of R in the first sector is easily seen to be
(z—x)% = —3Ac(y+2¢),
ie. “6Ac2—3A¢c(x+2) + (z—x)2 = 0.
Solving for ¢, one gets
120¢ = 3A(x+2) +-{9A2(x +z)% — 244 (z—x) 2},
On considering the intersection of this arc with the line x = 0, one finds that the positive
value of the radical is to be taken, so that the equation of the boundary of R in the first sector
can be expressed as

S, y,2) = 8A(x+2) +{9A%(x +2)2— 24A(z—x) 2} = 12Ac. (15-3)
Now the two parts of the theorem will be proved one by one.
(a) Let 1>8. Then (0, — 3¢, 3¢) = (¢, —2¢,¢),
i.e. 9Ac+ 3¢(9A2 —24Q) > 124¢
or 912 — 241> A2,
since 1=3.

Therefore the hexagon belongs to type I and the result follows from theorem 1.

(b) Let8<A<3. Then the condition (4-1) is easily seen to be satisfied. The equations (4-2)
which define a and 4 are clearly equivalent to (15-1).

It will now be shown that the region belongs to type II. For this it will suffice to prove that
along 4, 4,, f(x,y,z) is a decreasing function of x (see preliminary remarks). The equation
of 4,4, is a®+ab+b? = ax—by = (a+b) x+bz.

Therefore, along 4, 4,,
dz

Y — 511+ 2) 1 pion(r-+ 22— 20— 19005+ 2) (14 ) —asaz—) (1)

= 3 [902(x+2)2— 244 (2—2)2] [24A(2—) (a-+25) — 922(x-+-2)
X a— 3aM{9A2(x +2)2 — 244 (z—x)2}]. (15-4)

As both A4; and D,(b—a, —a—2b,2a+b) lie on the first sector boundary, the value of
3A(x+z) +{9A%(x +2)2— 241 (z—x) %} at both 4, and D, is the same, so that at the point 4,

SA(x+2z) +{9%(x+2)2—24A(z—x) 2} > 34 (a+2b).

Vor. 243. A, 61
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Therefore, at 4, along 4, 4,,

’Z,—;<K[8(b~a) (a+2b) —3al(a-+2b)], (15-5)
where K is a positive constant. As 1>% and 5<2q, it follows from (15-5) that at 4, along

4,4, Y
To complete the proof of the theorem it hasonly to be shown that the lattice.# | isadmissible.
For this lemma 17 is applied with D = 6.
The points of £, with £, 7, given by
0<E24-Ep+1*<6,
are no other than +4,, +-4,, +-4,, 4-24,, +24,, +-24,, 4+-C|, +-C,, and 4-C;. They are all
known to lie outside R. Therefore it has only to be proved that

J10, —J7(a?+ab+b2), J7(a®+ab+-b2)}=121c,

<0, so that the region belongs to type II.

ie. 3M{/7(a?+ab+b%)}+{631%(a+ab+b%) — 168A(a%+-ab+b%)} > 124c.
By lemma 1-1 a?+-ab+ 52> 3¢2.
Therefore 3A{/7(a%4ab+b%)} =3¢ /21 >12Ac,

and the theorem is completely proved.

16. HYPERBOLIC HEXAGONS

Before taking up the hyperbolic regions it will be convenient to prove the following
particular case of lemma 17.

LEmMmA 19. Les

S0, —/19(a?+ab+b?),./19(a%+ab -+ b2)} = f(c, —2¢, ¢).

Then & | is admissible if the points A, + 24, and A, + 34, do not lie inside R.
- Proof. Because of the hypothesis it follows from lemma 17 that %, is admissible if all
£A,+n4, with 0<E2+4-£n+72<18 lie outside R. It is easy to see that the only integers less
than 19 which can be expressed as £2+§&y+79% are 1, 3, 4, 7, 9, 12, 13 and 16. The corre-
sponding points {4,474, can be obtained by rotations through multiples of {7 from the
points 4,, A, +A4,, 24,, A, +24,, 24, + 4,, 34,, 44,, A, +34,, 24, + 24, and 3A1+A . There-
fore the lemma will follow if all these points lie outside R. For this it has only to be shown that
24,+4, and 34,4 A, do not lie inside R. This is an easy consequence of the convexity
condition, since, for all n>1, n4, and n(4, + 4,) lie in the part of the first sector external to R.

THEOREM 7. Let R be a region with hexagonal symmetry bounded by hyperbolic arcs. Let (¢, —2¢, ¢)
be the mid-point of one of these arcs and let the asymj)totic angles of the hyperbolas be 180° — 20. Write

tand; then

. Jg
(a) If O<ml\“/5 A(R) = A and the only critical lattice is generated by the mid-points of the

boundary arcs.
(&) I f—“/5<m1<1 then A(R) = A, where
J3 (a®+ab+b2), (16-1)
and 46? = (a4-B)?—m2(a—b)? — (a-+2b)%—9a?m3. (16-2)
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However, if m3* <28 = 0-929 ..., A(R) is equal to A and there are just two critical lattices.

Proof. The perpendicular distance of (¥, y, z) from the line x = zis easily seen to be jli;’ (x—2z).

Therefore the equation of the boundary in the first sector is given by
y2—mi(x—z)? = 4c?,
ie. Sx,y,2) = {y?—mi(x—2z)%} = 2. (16-3)
Now the two parts of the theorem will be proved separately.
(a) Since 0<m1\“—/3§,
S0, —38¢, 8¢c) = {9¢2(1 —m?) P > 2.
Therefore the region belongs to type I and the result follows on application of theorem 1.

(b) Asm;> %, the region belongs to types IT, IIT or IV. Equations (4-2) oflemma 1 which

define a and b are easily seen to be equivalent to (16-2). The relation (16-2), on dividing
by 42 and writing a/b = j, gives
8mi 2+ (2mi—2)j—3 —m} = 0. (16-4)
It will now be proved that R belongs to types II or ITI. As explained in the preliminary re-
marks, it will suffice to prove that
a?+ab+b2< (a+2b)c. (16-5)
Write F=4(a®+ab+b%)2—4(a+2b)%c?
= 4(a®+ab+b%)%— (a+2b)%{(a+b)2—m2(a—b)%}
= b*[*(3+mi) +5°(2+2m]) —72(1 4 3m) —j(4+ m}) +-4mi]
= b4(j—1) [/*(8+m}) +5%(5+3mi) + 4 — 4mi]
= 0(j—1)8(j)- (16-6)
Substituting for 8mf 2 and 64m} j3 from (16-4), one gets
64mi(j) — 64m}(4j— 4m3)
(54 3m3) SmA(3-+m3) — (2mi—2) j]
+(3+m3) [8m3(8+m3) j+ (2—2m3) {(3+m3) + (2—2m?) j}]
= j(124132m32 +276m} — 36m$) + (18 -+ 114m3 + 102m} — 234m§)
=¥ (). (16-7)

As m}< 1, both the terms in y(j) are non-negative, so that y(j) >0. Further j<1, therefore
it easily follows from (16-7) and (16-6) that (16-5) is true and R belongs to types II or III, to
both of which theorem II applies.

Now, in order to complete the proof, it has only to be shown that, for m}< 2, the lattice
&, is admissible. By lemma 19 this will follow if one can prove that

(i) 4,+24, lies outside R, '

(ii) A, 34, lies outside R, and

(iii) f{0, —./19(a®+ab+b?%),./19(a®+ab+b%)} > 2.

Proof of (i7). From table 1 the co-ordinates of 4,34, are (4a+3b, —a—4b,b—3a). As
both —a—4b and b—3a are negative, 4,+ 34, lies in the second sector. The boundary of
R in the second sector has the equation

x2—mi(z—y)? = 4¢% = (a+2b)2—9a’m}.

* A (R) is probably equal to A for other values of m; too, but I have not been able to prove it.
61-2
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Therefore, it has to be shown that
(4a-+3b)2—m3(5b—2a)2= (a+2b)%— 9a’m3,
1.e. 15a2420ab -+ 562+ 5a’m? -+ 20abm?2 — 256?m3 = 0. (16-8)
Since a> b and mi<1, it follows that
1502+ (20ab — 10b%m3) + (5b2 — 5b%m?) + 5a?m3 -+ (20abm? — 10b2m3) =0,

so that (16-8) and hence (ii) is proved.

Proof of (7). The co-ordinates of 4,24, are (3a+2b, —a—3b,b—2a). As both —a—3b
and b—2a are non-positive, 4;+ 24, lies in the second sector. Therefore, one has to prove

that (3a-+26)%—m3(4b—a)?> (a+2b)2—9a?m?,
ie. 842+ 8ab + 8a’m} -+ 8abm? —1662m? >0,
or $(j) =7*(L+mi) +j(1+m]) —2m=>0. (16:9)

Substituting for 8m? j2 from (16-4), one has
8mi(j) = 8mi(1+mi)j—16mi+(1+mf) {(3+mf) — (2m}—2)j}
= J(1+m3) (6m}+2) + 38+ 4mf— 15m}
>1(1+m}) (6m3+2) +3+44mj— 156m}
= 4+ 8m}—12m}
=0,
since />4 and m}<1. From this (16-9) and hence (i) follows.
Proof of (i1t).
f{0, —/19(a®+ab-+b?), . /19(a?+ab+b%)} = {19(a%+ab+b?) (1 —mi)}.
Therefore (iii) is equivalent to
19(a?+ab+b%) (1 —m3) = 4c2
As a%+ab+b%>8¢% and mi<{2, ~
19(a?+ab+5%) (1—m?) —4¢2>c2(53 —57mj) > 0.
This completes the proof.
By more detailed arguments it is possible to prove (iii) for m;<0-9317..., and hence to
prove that A(R) = A for §<m?<0-9317.
17. TWELVE-SIDED STARS

THEOREM 8. Let R be a star-shaped equal-sided dodecagon with centre at the origin, remoter vertices
on the lines x = 0, y = 0 and z = 0, and nearer vertices on the lines y = z, z = x and x = y. Let the
co-ordinates of one of the vertices be (¢, —2¢, ¢) and the vertical angle be 20 = 2 tan~1m.

(a) If 60°<20<120°, then A(R) = 2¢%,/3, and the only critical lattice is generated by the nearer
vertices.

(b) Let x; = 0-422 ... be a root of the equation

3xt—2x3—36x2—6x+9 = 0. (17-1)
Suppose that x,<m /3 = 3m, <1, then A(R) = A, where
_ 2 2 :
A_JS (a%+ab+5?), (17-2)
and ¢(1+3m,) = a+(2b+a) m, = (b—a)+ (3a+3b) m,. (17-8)

Also, there are just two critical lattices.
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Proof. Asm, = 1 m, the equation of the boundary lines is easily seen to be

f(xyy’ Z) = 6(1 —]—3777,1),
x+my(z—y), when 0<x<z,

where flx,y,2) = z+my(x—y), when 0<z<x,
Y2) = —z+m,(x—y), when 0<—z<—y, and

—y+my(x—z), when 0<—y<—z (17-4)
For 20<120°, R is easily seen to be a region with hexagonal symmetry. Now take up parts
(a) and (b) separately.
(a) As2tan~!m = 20> 60°, therefore m> :/1—3 and m, >%. Therefore

S(0, —38¢, 3¢c) — (¢, —2¢,¢) = 6myc— (148m,) c=0,

so that R is a region of type I and part (a) of the theorem follows on application of theorem 1.
(b) Now 0-422...<3m; <1, and R is obviously a region of type IV. Equations (4-2) and
(47) which define a, b and Aare clearly equivalent to (17-2) and (17-3). From (17-3) one gets

alb = (1+m,)/2(1—m,). (17-5)

In order to apply theorem 3 it has first to be shown that the area condition postulated
therein is satisfied. As explained in the preliminary remarks it will suffice to prove that if
P(x1,4,,2;) is any point on the boundary between 4,(a, —a—b, ) and T (¢, —2¢,¢), and if

s g, r are real numbers with p+¢+7 = 0 for which the points (p+4x,, ¢+ 1y,,74-1z,) lie on
the second sector boundary, then

A< p(zi—y) —21(r—q) | = | p(22,+x1) —x,(2r +p) ], (17-6)
with the sign of equality only when P coincides with 77 and m; = m’ (say).

Since #+y+z = 0 for all points in the plane, one obtains from (17-4) after eliminating
the middle co-ordinates

x,+m,(2z,+x,) =¢(1+3m,), (17-7)

— %z, —r+my (%, +2p+ 3z, +7) = ¢(143m,), (17-8)

and p—dritr—dz b m(p— b —r+32,) = o(1+3m,). (17-9)
By addition and subtraction, (17-8) and (17-9) give ‘

—3(%+22) (1—m;) +p(1+3m;) = 2c(143m,), (17-10)

and (p+2r) (1 —m;) —$x,(14+3m,;) = 0. (17-11)

Therefore
(L+38m,) (1—my) {p(2z,+,) —x,(2r+p)}
= 2c(1—3my) (L—my) (x,+22)) +§ (%, +22;)2 (1 —m;)2— 23 (1 + 3m,)?,
so that (1+38m;) (1—my) {p(22,+%,) —#,(2r+p) — A./3}
= 2c(1+3my) (1—my) (%, +22,) + (%, +22,)2 (1 —m,)?
— 541 (143m;)2— (1+3my) (1—m;) A3
= ®(x,,z,) (say). (17-12)
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Since 0<m; <1, the area condition will obviously be satisfied if it can be shown that at all
points on 4,7}, ®(x;,z,) >0, except that ® = 0 at 7; for m; =m. Along 4,7 from 4, to T},
x increases continuously. Therefore it will suffice to prove that

(1) Along 4,7}, @ is a strictly increasing function of x, and

(ii) At the point 7}, ®> 0, except if m; = m, when @ = 0.

Now, the equation of 4, 7] is

x4+my(2z+x) = ¢(1-+ 3my).

Therefore along 4, 7]

erefore along 4, T; iz 1+m,

dx 2m;
and ‘% — (1 3m,) 2 {26(1+8my) (1—my) -+ (%, +22,) (1 ——ml)z}{ 1+m1} <0.
my

This proves (i). Now to prove (ii).

Since b = 2a(1—m;)/(1+m,), (17-3) gives

B 4m,(1—m,) ) )
c(1-3my) —a{(1+m1)+ - } (1+ S om—smd),  (1713)

and AJ/3 = 2(a®+ab+b?)

2(1—m,)  4(1—m )2}
— 0,2 1 1
S e e (R

2a*
B (14my)?
From (17-12), (17-18) and (17-14) it follows that at 7} (¢, —2¢,¢)
O = 1{12(1+3m1) (1—m,) +9(1—my) 22— (1+3m,) 22— 2(1+3m,) (1—m,) A /3}
21 (20— 36m?) (1-+6m;—3mf)*  4(1+3my) (1—m) (7—6m1+3m%):|

(7 — 6m; + 3m2). (17-14)

2 (1-Fmy)? (1+3m,)? (L4my)?
4a%(3m;—1
- +§21()2"(2i +3)ml)2 (27m— 6m3 — 36m2—2m, +1)
_ 4a*(8my—1) .
= (itm)? (1+3m1)2‘I”(m1) (say). (17-15)

By the rule of signs, ¥(m,) = 0 cannot have more than two positive roots. Further
T0)>0, ¥(#)<0 and W(owo)>0.
Therefore ¥'(m,;) = 0 has exactly two positive roots 7 and m’ and
0<m<4,i<m’<oo. (17-16)
Consequently W(m,) = (my—m) (m;—m") W(m,),
where W(m,) is positive for all positive m;. From the expression for ¥'(m,) in (17:15) it is now
clear that 7 is the root in the interval (0, ) of
27m$— 6m3 —36m?—2m;+1 = 0.
Write 37 = x,. Then x, is the root in (0, 1) of
3x*—2x3—36x2—6x+9 = 0.
Now for all x, = 3m<3m, <1, ¥(m,;) <0. Also ¥'(m) = 0. Therefore it follows from (17-14)
that at T}, ®> 0 for all x; =8m <3m;<1and ® = 0 for m; = m. This proves (ii), so that the
area condition of theorem 3 is satisfied.
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In view of all this the theorem will follow by the application of theorem 8 if it can be shown
that (a) &, and #, are admissible, and (b) for m; = m, the lattice generated by (¢, —2¢, ¢)
and (2¢, —c¢, —c¢) is not admissible.

By the corollary to lemma 18, (b) follows from the

LemMA. Let p, q and r be defined by (17-10) and (17-11) with both x, and z, replaced by c. Then
the point (p—3¢, g+ 8¢, r—3c) does not lie on the boundary of R.

Proof. Write
3c(1—my) 3¢ 2

P30 g Bed—my) 3¢ 2 .
¥ =Tt Tam) "2~ (iamy (Y 17T10)
b, 4 [e(1+3my) | ¢(7+9m,)
and Y =—p—r+3c= 2{2(1_7”1) +2(1—|—3m1) + 3¢
—2¢(14m,)

S m) (remy) T

_¢(1+4m;—9m})

— (1=my) (1+3my)’
Since m, <%, it is easily seen that 0<y’ <«’. The equation of the boundary of R for 0 <y <« is

y+my(2x+y) = c(1+3m,).
(1+m;) (1+4m;—9m?) m,; }
(1—my) (1+3my) (1+3m,)
_ ¢(1+9m, —9mi—9m3)
(1—my) (1+3m,)

Therefore, if (x',y’) lay on the boundary of R, it would follow that

Now y'+m (2% +y') = c{

1+9m, —9m2—9m3 = (1—m,) (14 8m,)% = 1+ 5m, -+ 3m}—9m3,
or 4m;(1—38m,) = 0,

which is not true, since m, is neither zero nor 4. Therefore the lemma and hence also (5)
follows.

To prove (a) apply lemma 17 with D = 6. For 0<<£?+4&p-+72<6, the points of Z; are

easily seen to lie on the boundary of R. Therefore, it has only to be proved that
S0, —J1(@®+ab+ %), J7(a* +ab+ %)} = (1 + 3m,y),
i.e. 2my J7(a®+ab+b6%) =¢(1 4+ 3m,).
Using (17-13) and (17-14), this is equivalent to
0<28(a%+ab+b%) m§— (1+ 3m,)2%c?
_ 28m}(7—6m;+3m}) a®> a*(1+6m; —3mj)?
a (1+my)? (1+my)?
a2

(1+my)?

(75m? —182m3+166m3 — 12m,—1)

= (Tﬁ;%')_ix(ml) (say). (17-18)
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dx(my) _

Now an, 300m3 — 396m? + 332m; — 12

= 300m3}+132m, (1 —3m,) +200m, — 12
>1.200 (0-4) —12
>0,

since 0-4 <3m, <1. Therefore, for x; = 0-422... <3m,; <1,

x(my) >x (9;)
= §17 {25(0‘4)4——— 132(0-4)34498(0-4)%2— 108(0'4) —27}

Thus (17-18) and consequently (a) is proved. This completes the proof of the theorem.
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